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We present a procedure for numerical modeling and the results predicted for dynamics of crater formation 

in asteroid impact on the ground in the approximation of two-dimensional gas dynamics in an axisymmetric 

formulation. Gas-dynamic equations are solved using a fully conservative difference scheme in Eulerian 

variables. Predictions are performed with both an analytic representation of the equation of state (according 

to TiUotson) and wide-range semiempirical equations of state with a phase transition into vapor and a more 

exact specification of cold compression. Consideration is given to impact at a velocity of 50 km/ sec  with 

body dimensions of the order of 1 kin. 

Study of the dynamics of processes occurring in a high-velocity impact is of interest for many problems of 

astrophysics and space physics, namely, for creating systems of meteoritic defence of space vehicles and for 
studying meteoritic craters, the origin of planet atmospheres, possible consequences of the fall of large space objects 
onto the Earth, etc. Experimental data on high-velocity impact belong to the range of velocities no higher than 20 

km/sec. The range of impact velocities of the order of 100 km/sec is practically inaccessible for experimental study 

(the only exception being the recent fall of the Shoemakers-Levy comet onto Jupiter at a velocity over 60 km/sec). 
As a consequence, theoretical study of impact dynamics (especially numerical modeling) gain particular importance 

for the range of higher impact velocities. 
Gas-dynamic equations in r - z  coordinates under the condition of axial symmetry of the problem are of 

the following form: 

P + Or + u  = - O---z' 

ov o ,  
P + V ~ r + U  = - -  Or '  

(1) 
1 dp [ l O ( r v )  Ou] 
-fi d t = - Or + -~z ' 

P -d t  = - P Or + " 

The equation of state P = P(e, p) closes the system. 
As previous investigations demonstrated, modeling of dynamics of asteroid penetration into the ground and 

of crater formation based on numerical schemes in Lagrangian coordinates causes certain difficulties because 

Lagrangian cells are strongly distorted in this problem. In numerical modeling of gas-dynamic problems in variables 
other than Lagrangian, terms that account for convective mass, momentum, and energy transfer appear in the 
equations. In this case, among the most important requirements specified for numerical algorithms is adherence to 
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the conservat ion laws and  balance relations involved in differential  equations. Analyzing various difference schemes  

used in practice reveals that  difference analogs of the convective terms therein do not satisfy the conservat ion 

condi t ions .  T h e s e  schemes  have  addi t ional  en t ropy  sources  and sinks resul t ing from uncoordinat ion of t h e  

approximat ion of convective flows in the equations for mass, momentum, and energy variation. Fully conservative 

difference schemes (FCDS) in Lagrangian variables, developed previously [ 1 ], showed good quality of the solutions 

for a var ie ty  of entirely different  problems. Their  difference from conservative ones is that some additional relat ions 

are fulfilled (a balance among individual types of energy ra ther  than only conservation of the total energy,  etc.). 

Attempts to work out fully conservative difference schemes for the gas-dynamic equations in Eulerian variables for  

a long t ime failed. Study [2 ] ascer ta ined that such schemes cannot be constructed using the quantities de t e rmined  

only on two temporal layers.  Only afterward was the construction of FCDS in Eulerian coordinates ( th ree - l aye r  

over t ime) a success. It was shown that convective flows of mass and internal  energy should be matched  [3]. 

Subsequent ly ,  mult idimensional  analogs of such schemes were also obtained [4 ]. 

We use a two-dimensional  partially th ree- layer  (with respect to velocity) FCDS in Eulerian cyl indrical  

variables (r, z) based on these principles. In the scheme, i denotes the point number  along the radius r, n is the 

point n u m b e r  along the axial coordinate  z, and j is the index of the temporal layer.  For simplifying the descr ipt ion 

we adopted  the following designat ion [1 1: A -- A y, .~ = A j+l ,  .~ = A y- l ,  and A a = a A  + (1 - a ) A .  In the employed  

numerical  scheme, magni tudes  of the coordinates, velocities (r, z, v, u), and mass M relate to nodes of the  net ,  

and magni tudes  of the densi ty ,  energy,  pressure, volume, and mass of the cell (p, e, P, V, m), to centers  of the 

cells ( these quantities are numbered  by the left lower angle, i.e., ai, n corresponds to ai+ 1/2,n+ 1/2 ). The volume, mass 

of the ceil, and mass of the node  are  equal to 

l 2 2 
Vi, n = -~ ( r i+l ,n  -- ri,n) (Zi ,n+l -- Zi,n) ; mi ,n  = ( ,oV)i ,n ; 

1 
M i ,  n = -~ (mi ,n  + m i _ l ,  n + m i _ l , n _  1 + m i , n _ l )  �9 

The  calculation of a temporal  step is broken down into two stages, as is generally accepted for Eulerian procedure .  

At the first  stage, we solved the equation for momentum components (the tilde indicates the value of a quant i ty  

obta ined af te r  the first calculation stage) 

v 
1(7+ v) - (v  + v ) i , .  l 

M i , n  2r  
1 

= 2 ri,n [(Pi,  n - P i - l , n )  (Zi,n - Zi ,n+l)  + 

+ ( P i , n - I  -- P i - l , n - 1 )  (Zi ,n-1 -- Zi,n)] , (2) 

and the energy  equation 

v 

[(U" + u )  -- (u  + U)i,n] 
M i , n  2r  

m i,rt 

1 2 2 
= - -~ r [ (Pi ,n  - P i , n - 1 )  ( r i+ l ,n  - ri,n) + 

2 
+ ( P i - l , n  - P i - l , n - 1 )  (riCh - r i - l , n )  l 

( ~ ' -  e ) i ,n  
= - ~ ? i , n  [ ( rvO'5) i+l ,n  - (rvO'S)i ,nl  (Zi,n+l -- Zi,n) + 

2 2 0.5 0.5 } 
+ (r i+l ,n  -- ri,n) (Ui ,n+l -- Ui,n) , 

(3) 

(4) 
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in whose  r ight -hand  s ides  only  the terms are left that relate to the pressure  and, in fact, co incide  with  the equations 

of Lagrangian procedure .  In these relations,  P = pa + q, where pa is the  pressure "weighed" in t ime (0_< a < 1), 
and q is the  artificial viscosity,  0 .5  = ( 7 +  v) /2 ,  u ~ = ( i f +  u ) / 2 .  

The  s econd  s tage  takes into account the terms relating to convect ive  transfer of a pert inent  quantity in the 

equations of m a s s  

( m  -- m)i ,n  
z = F X i , n + l / 2  - F X i + l , n + l / 2  + F Y i + l / 2 , n  - F Y i + l / 2 , n  +1 ' (5) 

energy 

(~n ~ ' -  m ~')i,n 
= I Y X i , n + l / 2  - v l l X i + l , n + l / 2  + Y l Y i + l / 2 ,  n - t I tY i+ l /2 ,n+  I , (6) 

and m o m e n t u m  

IN/' ( v +  v) -- M ( 7  + v) li,n 
2~ 

[~t (u  + u) - M (~" + u) li,. 
2v 

= d P X i _ l / 2 ,  n -- dPXi+l /2 ,  n + d ~ Y i , n _ l / 2  - d P Y i , n + l / 2 ,  

= r n - O X i + l / 2 ,  n + O Y i , n _ l / 2  - O Y i , n + l / 2  . 

(7) 

Here, the fo l lowing express ions  are used for relevant flows: 

1 
F X i , n + l / 2  = ' ~  (ri ,n+l + ri,n) (~//,n+l + ~i,n) (Zi,n+l - Z i , n ) P i , n + l / 2 ,  

P i - l , n ,  ~>>- 0 , 
P i , n + l / 2  = [ P i , n ,  ~ <  0 ; 

F Y i + l / 2 ,  n = -41 (ri+ 1,n + ri,n) (u'i+l,n + "Ui,n) ( r i+l ,n  - ri,n) P i + l / Z , n  

l P i , n - l  , g >- 0 , 
P i + l / 2 , n  = [ P i , n ,  "if< 0 ; 

1 
~klXi ,n+l /2  = -4 (ri,n+l + ri,n) (~/,n+l + ~//,n) (Zi,n+l -- Zi,n) ( P e ) i , n + l / 2 '  

{(Pe)i-l,., ~'>_- 0 , 
( t g e ) i , n + l / 2  = (pe) i ,n  , v ' <  0 ; 

1 
I t l Y i + l / 2 ,  n = -~ (r i+l ,n  + ri, n) (Ui+l,n + Ui,n) ( r i+ l ,n  - ri,n) ( P e ) i + l / 2 , n ,  

(De)i,rt_l , u" ~> 0 , 
(Pe ) i+ l /Z ,n  = (pe)i,n , "u < 0 , 

* 1 
1 (~',n + ~'+l,n) F X i + l / 2 , n  dPXi+l /2 ,n  =" -2 tYPXi+ 1 / 2, n = 2 ('ffi,n + fi'/+l,n) FXi+l/2,n,  

* i ('ui,n + ui,n+l) F Y i * n + I / 2  c ~ Y i , n + i / 2  = -21 (~i,n + ~ , .+ I )  F Y i , n + I / 2 ,  -~--Yi,n+I/2 = --2 ' 

* 1 ( F X i , n _ l  + + + 1/2) F X i + l / 2 , n  = -4 / 2  F X i , n + l / 2  F X i + l , n - 1 / 2  F X i + l , n +  ' 
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* 1 
FYi ,n+l /2  = ~ ( F Y i - 1 / 2 ,  n + FYi+I /2 ,  n + F Y i _ l / Z , n +  1 + F Y i + l / 2 , n + l ) ,  

At this s tage,  a definitive transi t ion from parameters  on the given and  former  t empora l  layers  to parameters  on the  

new tempora l  l ayer  is accomplished.  Introducing the quantit ies FX* and FY* and  represen t ing  them in te rms of the  

flows ~ X ,  ~ Y ,  ~ X ,  and ~ Y  (matching of the flows) allows satisfaction of the  principle of conservation [3 ]. I t  

should be no ted  that  a somewhat  different definition of the quant i t ies  (pe) that  is compat ib le  with the principles of 

full conservat ion is possible. 

For  closing the system of gasdynamic  equations it is necessary  to assign the equat ion of state of media ,  

i.e., to def ine  the pressure and  t empera tu re  as functions of the energy and densi ty .  In calculations we used  the  

M i e - G r i i n e i s e n  equation of s tate  in the form proposed by Ti l lotson [5 ]. For mater ia l  dons i ty  larger than the normal  

densi ty of a solid body p >__ P0 we assumed the relation 

p =  [ a +  b ] pe + Al~ + Blt2. 
1 + e / (e0  ~2) 

With dens i ty  smal ler  than that  of a solid body p _< P0 we used  the equation 

:+[ [/: I]] [ p ape 1 + e/ (eo 62) + A~ exp - / 3  -- 1 exp - a - 1 . 

In these express ions ,  6 =P/Po and/~ = 6 - 1. In calculations with the Tillotson equat ion of state,  gabbroid ana r tos i t e  

was taken to be  the meteorite and  ground material ,  to which the  following pa rame te r s  correspond:  a -- 0.5, b = 0.11, 

e 0 = 9.1 M J / k g ,  A -- 70.5 GPa,  B = 135 GPa ,  p0 -- 2.94 k g / d m  3, a = 5, andf l  = 10. Besides,  wide-range semiempir ica l  

equations of s ta te  for St02 are  used for describing granite ( the meteriote and  ground)  [6, 7 ]. T h e r m o d y n a m i c  

pa ramete r s  a re  calculated on the basis of resolving the p ressure  and  energy into cold and  thermal (nuclear  a n d  

electronic) components  [8 ]. The rma l  electronic components of the  energy and pressure  were  calculated on the basis  

of the T h o m a s - F e r m i  model for the average  charge Z = 10 [8 ]. The pressure  on a cold isotherm for p < POk 

(P0/~ = 2.59 k g / d m  a) was specified in the form Pc = A( 6'~ - 6"),  c) = P/Pot" For v we assumed  a value of 5 /3 .  
Magni tudes  of A and a were de te rmined  f rom the known sound  speed and subl imat ion  energy:  cr = 3.115 a n d  A = 

24.8 GPa .  For  compressions f rom 1 to 3 we used a cold i so the rm [6 ] that takes  in to ' accoun t  exper imental  da ta .  

For g rea t e r  compress ions  it was joined with  a cold i so the rm of the T h o m a s - F e r m i  model  with corre la t ions  

calculated for the average charge Z = 10. T h e  thermal free ene rgy  of a nuclear  componen t  of the material  consis ts  

of three t e rms  describing the condensed s tate  (within the f r amework  of the Einstein model) ,  evaporation,  a n d  

dissociation. T h e  following expressions were obtained from it for  the pressure and  energy:  

. . . .  + , E = E , - 6 . 5  
1 + z~ 1 1 + z 2 

where Q -- 21.1 MJ /kg  is the dissociation of a SiO2 molecule. Here ,  

Q n 2 , M 1 + z~ 1 1 + z 2 

E .  = a I + a 2 T +  a3 T2 ,  if T <  T . ,  E .  = b 1 + b2T,  if T > T . ,  

0.0266 2 / z 9 y  010z0313.36 ( Q _ M _ )  
g 1 - -  0 1 0 2 0 3 r  /90 Z 2 = T - ~ p  2 exp -- , 

OoP 9y-1 ' R T  

where T.  = 680 K, a 1 = - 8 . 3 1 . 1 0 3  J /kg ,  a 2 = 66.9 J / ( k g - K ) ,  a 3 = 1.185 J / ( k g .  K2), b I = - 5 5 . 7  J /kg ,  b 2 = 1.67.103 

J / ( k g - K ) ,  01 = 1351 K, 02-- 603 K, 03-- 1780 K, 7 = 2 /3 ,  0 o = 600 K, P0-- 2.57 k g / d m  3, n 1 = 0.25, and  n 2 = 0.2 

[6, 7 ]. Calculat ions based on the above-s ta ted  model y ie lded the  following p a r a m e t e r s  of the critical point: T = 
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Fig. I.  Pressure  and tempera ture  vs. density for the set of energies (3, 4, 7, 

10, 20, 40, 100, 600 MJ/kg,  upward) by semiempirical equations of state. P, 
Pa, p ,  kg/m3;  T, K. 

5386 K, p = 0.75 k g / d m  3, and  P = 0.51 GPa.  The  equations of state, derived from these expressions,  are shown 

in Fig. 1, which plots i soenergy  curves and a binodal  calculated on the basis of the Maxwell rule (a dashed line). 

We performed tes t  calculations of the dynamics  of high-velocity impact for a wi'de range of impact velocities 

and dimensions of the s t r iker  using the equations of state both for ideal gas and  in Tillotson's form. Comparing 

the results of our calculations of the impact of an a luminum striker on an a luminum target showed quite sat isfactory 

agreement  with previous calculated results and experimental  data [9 ]. For  fairly long times, the numerical  solution 

approaches self-similar re la t ions  (by the profiles of quantities, by the time variation of axial and radial components  

of the momentum, etc.).  

We next proceed to calculations of the meteori te  impact on the ground.  The  meteorite (the striker) was 

modeled by a cyl inder  of d iameter  D and height H that  collides with the ground with velocity u o normal to the 

surface. We specifically consider  the following calculation versions: 

1) D -- H = 1 kin, the initial velocity is u 0 = - 5 0  km/sec,  densit ies of the meteorite and ground are equal 

to 2.94 k g / d m  3, and the equation of state is taken in Tillotson's form; 

2) similar to vers ion 1 but the striker dimensions are twice as large D = H = 2 km; 

3) similar to vers ion 1 but wide-range semiempirical relations are used as the equations of state; densit ies 

of the meteori te and g round  are equal to 2.57 k g / d m  3. 

The  pressure at t he  initial instant of t ime is 1 arm (ground, striker, and  gas). The g a s - g r o u n d  contact  

boundary  lies at z = 0, positive z correspond to the gas, and negative to the ground.  At the initial instant of time 

the meteori te comes in contact  with the ground. It should be noted that  in the relief region (at densities somewhat  

smaller than the densi ty  of a solid body p0 ) the Tillotson equations of state gives very large negative pressures (at 

low energies).  In fact, when  the negative pressure exceeds a magni tude  of the order  of 0.1 GPa  there occurs a 

splitting off (a breaking) ,  and  the pressure goes to zero. In this connection,  when it turned out that  the pressure 

was lower than - 0 . 1  G P a  we assumed that  p = 0. A similar procedure in this parametric  region was employed in 

[91. 

The  difference net  is constructed such that there  is a satisfactory spatial resolution near  the region of the 

initial position of the s t r iker  (where actually a cra ter  is formed) and at the same time the flow can be t raced at 

fairly large distances f rom the place of impact. For  this end, in the striker region the net is constructed with a 

constant step along radia l  and  axial coordinates,  and  in the remaining region the cell size increases in geometric 

proportion with a coefficient  of 1.05-1.1 with respect to the distance from the initial position of the striker. For  

evaluation of the melted and  evaporated mass upon impact we adopted the densi ty  of internal energy corresponding 

to melting ~m = 1.5 M J / k g  and  to evaporation % -- 11.7 MJ/kg. For the striker mass M0 and velocity u 0 the maximal  

possible melted mass (in masses  of the striker) is M'm/M 0 = Uo2(2em). For  the assigned values u 0 = 50 km/ sec  and 

em = 1.5 MJ/kg  we obta in  a melted mass of M'm/M = 833. An analogous evaluation for a maximal evaporated mass 

yields M'e/M o = u~/(2%) = 107. These estimates are  obtained proceeding from the condition that the entire kinetic 

energy is spent on mel t ing (or evaporation). In the calculation, at each given instant  of time we will de termine  the 
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Fig. 2. Flow pa rame te r s  for t -- 0.05 sec (I) and  t -- 0.3 sec (II) ( ls t  version): 

position of the contact  boundaries  (heavy lines) and  isolines conforming to 

the melting and  evaporat ion energy, MJ /kg  (a); pressure  field, GPa  (b); and 

densi ty  field, k g / d m  3 (c). z, r, km. 

cell mass M e, w h e r e  the specific energy  is higher than the evaporat ion energy,  and the cell mass Mm, where the 

specific energy  is h igher  than the mel t ing energy.  

We nex t  discuss the resul ts  calculated by the first version.  At the place of impact  the pressure increases 

rapidly and is 1950 GPa  (0.023 sec) at  a maximum.  Two shock waves arise on the axis,of symmet ry ;  one goes deep  

into the g round  a n d  the other  propagates  over  the striker body  in the  direction toward its motion. In an instant  of 

0.05 sec, the m a x i m a l  pressure decreases  to 623 GPa,  the in ternal  energy  has a maximal  value of 220 MJ/kg ,  and  

the maximal  dens i ty  is 5.95 k g / d m  3. T h e  shock wave going over  the str iker body rapidly increases the specific 

energy of the  mate r ia l  and evaporates  it. The  shock wave moving into the ground has  a velocity of about  - 2 0  

km/ sec  and is s i tua ted  at z -- - 1.6 km. Here ,  on the axis of s y m m e t r y  the s t r i k e r - g r o u n d  contact boundary  reached 

z -- - 11 .15  km,  the  s t r iker -gas  contact boundary  attained z -- - 0 . 8 4  km (on the z axis) ,  and  the radial d imension 

of the crater  i nc reased  to 1 km. By this ins tant  of time the meteor i te  body  is turned inside out, i.e., the outer  surface 

of the s tr iker  (making  contact with the gas at the initial ins tant  of time) becomes inner,  and the inner  surface 
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(making contact with the ground at the initial instant of time) becomes outer. An upward jet generates over the 

edge of the formed crater. Here also emerge "tendrils" of the ground material thrown into the gas. Figure 2, I 

presents the position of contact boundaries (a) and pressure (b) and density (c) isolines at the instant of 0.05 sec. 

An intricate flow pattern is formed. The striker body and the inflowing gas move into the ground, and in the ground 

lying below the striker this flow begins to diverge along the radius. Over the edge of the formed crater, an upward 

jet arises that spreads out radially at a height of about 1 km. A part of the material in the jet acquires significant 

velocity components directed toward the axis of symmetry in the rarefied region formed after the striker. Sub- 

sequently, the flow cumulates on the axis of symmetry, and as a result, the density of internal energy (and 

temperature) in this region rises significantly, up to 420 MJ/kg (0.1 see). A hot jet of the gas ascends a height of 

about 2 km by the instant of 0.1 sec. At the same time, a pressure and density maximum remains in the shock 

wave propagating in the ground; it amounts to 224 GPa and 5.15 kg/dm a and is located at a certain distance from 

the axis of symmetry. The velocity of the shock wave on the axis of symmetry is 9 kin/see. The depth of the crater  

increases by this instant of time up to 1.8 kin, and the radial dimension up to 1.3 kin. Further on, the flow keeps 

developing and the crater  enlarges. By the instant of 0.3 sec, the s t r iker -ground  contact boundary reaches a 

maximal depth of 2.2 km. The  evaporated meteorite material in the lower part of the crater starts moving toward 

the gas. Here R a y l e i g h - T a y l o r  instability is likely to develop, since a more dense material accelerates toward a 

less dense. A detailed study of this process probably requires a better net resolution, which we did not achieve. 

The crater dimensions by this instant of time are as follows: the depth is 3 km and the radius is 2 km. Figure 2, 

II presents the fields of various quantities at a time of 0.3 sec. The hot region in the gas ascends a height of about 

7 kin, and the maximum of the specifc energy is 230 MJ/kg. The maximal pressure in the shock wave propagating 

over the ground is 48 GPa.  Subsequent development leads to enlargement of the region covered by the flow and to 

gradual decrease of the maximal parameters. At t -- 2 sec, the pressure maximum in the shock wave is 3.53 GPa, 

the hot region in the gas has risen to a height of about 40 km, and the maximum of the specific energy therein is 

48.6 MJ/kg. By this instant of time the crater depth is 6 km and the radius is 5 kin. 

The time variation of various integral characteristics is presented in Fig. 3, the 1st version. The following 

quantities are shown: internal (in) and kinetic (k) energies (a); evaporated mass (e) and melted mass (m), all in 

masses of the meteorite (b); axial (Iz) and radial (It) components of the momentum (c); and total energy of the 

cells with the specific energy larger than the evaporation energy (e) and the melting energy (m) (d). All quantities 

are related to the initial energy of the striker Eo -- Mou~/2. While penetrating into the ground, the striker 

decelerates and the kinetic energy converts rapidly to internal. By the instant of 0.16 sec the internal energy is at 

a maximum and makes up 70% of the initial energy of the striker. Subsequently, it falls slowly and the kinetic 

energy rises. At t-- 1.7 sec they become equal. The evaporated mass attains a maximum at t -  0.13 sec and comprises 

24.9 masses of the meteorite. A maximum of the melted mass (131.5 M0) is formed noticeably later, at 0.3 sec. 

The magnitude of the melted mass remains nearly constant up to 1.3 sec and is larger than 100 M o. The time 

dependence of axial and radial components of the momentum gradually becomes a self-similar law with an index 

of 0.59. Already for a time larger than 0.3 sec this relation is practically fulfilled. The portion of the internal energy 

contained in the evaporated material increases rapidly, becomes maximal at 0.087 sec (0.645), and then falls to a 

magnitude smaller than 0.1 for a time longer than 0.6 sec. The similar value for cells with energy higher than the 

melting energy attains a maximum somewhat later, at 0.166 sec, and is equal to 0.696. This value is practically the 

same as the maximum of the internal energy, making up 0.7 of the total energy. Thereafter  the energy portion in 

the melt decreases to a value below 0.5 for a lime longer than 0.42 sec. The portion of the internal energy at this 

instant of time is higher and equal to 0.66. Further on, this discrepancy becomes greater, since the energy contained 

in the melt rapidly decreases in time, and the internal energy falls very slowly. It should be remarked that the 

energy portion in the material raised above z = 0 is smaller than 0.1. 

Because the flow pattern in the second calculation version is qualitatively similar to the foregoing version, 

we will not describe it in detail. It should only be noted that the initial kinetic energy of the striker E0 is increased 

by 8 times (owing to dimensions) in comparison with the first version. Figure 3 (the' 2nd version) plots the time 

variation of integral characteristics of the flow. The maximal internal energy is 0.7E 0 and is attained at t = 0.4 sec. 

The time variation of the evaporated and melted masses is qualitatively similar to the first version, and here the 
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evaporated mass at ta ins  a maximum of about 0.2 of M'  e, and the melted mass about 0.16 of M'  m. It should also be 

2nd version 
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Fig. 3. Temporal behavior of integral characteristics for the 1st and 2rid 

calculation versions: internal and kinetic energies (a),  evaporated and melted 

masses  (b), radial and axial momenta (c), and energy  portion in the melted 

and  evaporated materials (d). E, J; I, g-era/see; t, sec. 

noled thai an increase  in the striker energy leads to a later a t ta inment  of the maximum of the evaporated and 

melted masses. Figure  3d (the 2nd version) illustrates the time variation of the energy conta ined in the evaporated 

and mcltcd materials  (relative to the initial energy of the striker E0).  An energy increase owing to the striker 

dimensions (versions 1 and 2) indicates a similar temporal behavior of the relative energy  in the evaporated and 

melted materials; only  the characteristic time increases by twofold in proport ion to E 1/3. The  cra ter  dimensions in 

the 2nd calculation version (a radius of 10 km and a depth of 11 km for t = 4 sec) doubled in comparison with the 

first version, i.e., the  dimensions were retained in reduced coordinates r' = r /Eo  la for the same reduced  instant of 

lime t = I / E ~  a. 

Wc now cons ider  results of the third calculation version, which uses wide-range semiempirical  equations 

of statc. The  flow develops like in the first calculation version. F igure  4, I presents  pressure ,  densi ty ,  and 

temperature fields for  an instant of time of 0.05 sec. The  spatial distr ibution of these quantit ies is close to that 

obtained in the first  calculation version. The  maximal temperature at t = 0.05 sec is above 6 eV, and  the region 

with a temperature  above 6.1 eV lies near  the axis of symmetry  at a depth  ranging from - 1 to - 1.5 km and stretches 

radially for up to 0.6 kin. The  maximal pressure in the shock wave propagat ing over the ground is 510 GPa.  The  

flow development leads to a gradual decrease in the parameters.  By the  instant of t ime of 0.3 sec the maximal 

pressure falls to 25 GPa ,  and the maximal temperature to 3.7 eV. The  pressure,  densi ty,  and energy  distributions 

for this instant  of t ime (Fig. 4, II) are similar to those obtained in the  first version and the maximal  values 

practically coincide. At the same time, the flow develops more slowly than  in the calculation with the Tillotson 

equation of state,  and  the region involved in the motion appears to be somewhat smaller.  Figure 5 shows the 
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Fig. 4. Flow parameters for t = 0.05 sec (I) and t = 0.3 sec (I I)  (3rd version):  

a) pressure, b) density, and c) temperature fields. 

temporal behavior of integral characteristics of the flow for this calculation version (values of the presented 

quantities are the same as in Fig. 3). While penetrating into the ground, the striker slows down and by t = 0.25 

sec over 2/3 of the initial kinetic energy transforms into internal. The mass of evaporated material attains a 

maximum of 26 MO (0.2 sec) and thereafter falls. The mass of the melted material increases up to a maximum of 

204 Mo (0.5 see), decreases to 150 M 0 (0.8 see), and afterward slowly increases again. The temporal behavior of 

radial and axial momenta is similar to the first version. The energy contained in the evaporated material attains a 

maximum of 0.67 E 0 C0.12 sec) and then falls. The energy contained in the melted material increases to 0.8 EO it 

= 0.5 see), thereafter decreases, and up to 2 sec remains practically unchanged, amounting to about 0.7 E0. 

Comparing with the first calculation version we should note the main difference, namely, while in the first version 

the internal energy attains a maximum and thereafter falls, becoming equal to kinetic at 1.7 sec, in the third version 

the internal and kinetic energies remain practically constant starting from 0.25 up to 2 sec. The difference in the 

temporal behavior of the melt mass and energy is also linked with this factor. 
The following should be noted in conclusion. We worked out a computational program for two-dimensional 

gasdynamic problems based on fully conservative difference schemes in Eulerian coordinates with a matched 

approximation of the flows. The calculations of various test problems indicated a satisfactory quality of the solutions 
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Fig. 5. Temporal behavior of integral characteristics for the 3rd calculation 
version. 

obtained using this procedure. We performed numerical modeling of the dynamics of crater formation as a result 

of meteorite impact on the ground. The calculated results allowed detailed consideration of the deformation of the 

meteorite body and the dynamics of crater formation and flow in the surrounding medium. The calculations reveal 

that an increase in radial dimensions of the crater lasts noticeably longer than does attainment of a maximal depth 

of penetration by the striker. For a striker 1 km in diameter, 1 km long, and with a velocity of 50 km/sec, the 

maximal depth of penetration into the ground (2.2 km) is reached at 0.18 sec, and for a time of 2 sec the radial 

expansion still persists. Comparing the results calculated for an impact with the same velocity but with different 

dimensions of the striker attests to a similarity in the flow characteristics. Here, the characteristic time and distance 

vary in proportion to the energy to a power of 1/3, and the relative masses M / M  0 and energies E / E  o prove to be 

the same at equal reduced instants of time t' -- t/Eo/3. Comparing the calculations with different equations of state 

(those of Tillotson and semiempirical ones with allowance for evaporation) manifests that while in the initial phase 

(the striker penetration into the ground and deceleration) the results turn out to be close, subsequent development 

of the flow differs markedly. 

The work was carried out with financial support from the International Scientific Technical Center (project 
V-23-96). 

N O T A T I O N  

r, z, coordinates; t, time; v, u, radial and axial velocity components; p, density; P, pressure; e, energy of 

unit mass; T, temperature; R, gas constant; M, molecular weight; Q, dissociation energy; Pok' normal density at 

T = 0 K; P0, normal density; y, Griineisen coefficient; 0 o, Debye temperature at normal density; cr and v, exponents 

in the pressure-compression relation on the zeroth isotherm. Subscripts: m, melted material; e, evaporated 

material; c, cold components of the equation of state; i, number of the point along the radius; n, number of the 
point along the axis; ./, number of the temporal layer. 
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